Dense Varitational
This layer is the bayesian version of the tf.keras.layers.Dense layer. It is parametrized by \(W,b\) and transforms the inputs, \(X\in \mathbb{R}^{N}\), as:
\[a(W^\top \cdot X + b)\]The parameters are variational and are setup as:
\[W = W_{\mbox{posterior}} + W_{\mbox{prior}} \times \epsilon: epsilon \sim \mathcal{N}(0,1)^{N \times \mbox{units}} \wedge W_{\mbox{posterior}}, W_{\mbox{prior}} \in \mathbb{R}^{N \times \mbox{units}},\]and for the bias:
\[b = b_{\mbox{posterior}} + b_{\mbox{prior}} \times \epsilon: epsilon \sim \mathcal{N}(0,1)^{\mbox{units}} \wedge b_{\mbox{posterior}}, b_{\mbox{prior}} \in \mathbb{R}^{\mbox{units}},\]Arguments: - units: int, specifies the output units; - activation: func, specifies the activation \(a\) used; - activity_regularizer: func, specifies the activity regularization applied; - kernel_prior_initializer: tf.keras.initializers.Initializer, specifies the initializations for the kernel prior, \(W_{\mbox{prior}}\); - kernel_posterior_initializer: tf.keras.initializers.Initializer, specifies the initializations for the kernel posterior, \(W_{\mbox{posterior}}\); - bias_prior_initializer: tf.keras.initializers.Initializer, specifies the initializations for the bias prior, \(b_{\mbox{prior}}\); - bias_posterior_initializer: tf.keras.initializers.Initializer, specifies the initializations for the bias posterior, \(b_{\mbox{posterior}}\); - use_bias: bool, specifies whether to use bias or not; - trainable: bool, specifies whether the parameters are trainable; - seed: bool, specifies the seed to generate random numbers;
Methods: - call: returns the output given an input; - get_config: returns a dictionary with the configuration needed to serialize the layer (see layer serialization); - from_config: returns a DenseVariational instanced class with the configuration received;